

Searches for Supersymmetry at the Tevatron

Michael Eads University of Nebraska – Lincoln

For the CDF and DØ Collaborations

Nebrasity lof Nebrasity 10f

nael Eads

University of Nebraska - Lincoln

Outline

- (Very) brief overview of Supersymmetry
- Trilepton searches
- Squark/gluino searches
- Stop/Sbottom searches
- GMSB diphoton searches
- Long-lived particle searches

The Tevatron Experiments

19 April 2002 - 8 February 2009

At 1.96 TeV, the Tevatron is still the world's highest energy collider, and an ideal location to search for new physics.

Both CDF and DØ have recorded over 5 fb⁻¹ of data, and continue to take data with ~90% efficiency

I will concentrate on results using over 1 fb⁻¹ of data

Michael Eads University of Nebraska - Lincoln

An Experimentalist's View of Supersymmetry

 Supersymmetry (SUSY) predicts that each standard model particle will have a SUSY partner (differing by ½ unit of spin)

 Must be a broken symmetry, or the "sparticles" would have the ~same mass as the SM particles (and we would have seen them by now)

 SUSY phenomenology is driven by how SUSY is broken

- Most generic has ~100 free parameters
- Much easier to work with mSUGRA (gravity-mediated), GMSB (gauge-mediated), or other SUSY breaking models with O(5) free parameters

Supersymmetric
"shadow" particles

Leptons → sleptons
Neutrinos → sneutrinos
Quarks → squarks
Gauge bosons → gauginos
Higgs bosons → higgsinos

neutralinos and charginos.

These mix to form

General SUSY Properties

- It's important to remember that SUSY models can represent a huge variety of possible signatures
- All of the analyses I present assume that R-parity is conserved
 - Lightest supersymmetric particle (LSP) is stable and neutral (good dark matter candidate) and will escape the detector undetected
 - Heavier SUSY particles decay to SM particles and (eventually) the LSP
 - SUSY particles are produced in pairs
 - → "typical" signature is SM particles (leptons and/or jets)
 and missing energy
- Additionally, most analyses presented use mSUGRA framework (exceptions will be noted)
- Many other possible signatures, such as photons+MET, long lived particles, mass resonances in dileptons, etc...

Trileptons

- Final states with leptons are "clean"
- Chargino/neutralino production typically have a relatively large cross section
- Can decay through virtual W/Z or slepton
 - Final state is 3 leptons + MET
 - Branching fraction small, but very clean final state with small backgrounds
 - Combine many final states to maximize sensitivity
 - Lepton pT depends on the mass relationships

CDF Trilepton Search (I)

- 5 separate channels (3 tight leptons, 2 tight + 1 loose, 1 tight + 2 loose, 2 tight + 1 track, and 1 tight + 1 loose + 1 track, where "lepton" means e or µ)
- Require lepton (or track) pT > 5-20 GeV, MET > 20 GeV, ΔΦ between leptons < 2.9, jet veto, Z-mass cut
- Dominant background is diboson

PRL **101**, 251801 (2008)

CDF RUN II Preliminary $\int \mathcal{L}dt = 2.0 \text{ fb}^{-1}$: Search for $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0$

Channel	Signal	Background	Observed
$3 { m tight}$	$2.25 \pm 0.13({\rm stat}) \pm 0.29({\rm syst})$	$0.49 \pm 0.04 ({\rm stat}) \pm 0.08 ({\rm syst})$	1
$2 { m tight,} 1 { m loose}$	$1.61 \pm 0.11({\rm stat}) \pm 0.21({\rm syst})$	$0.25 \pm 0.03({\rm stat}) \pm 0.03({\rm syst})$	0
$1 { m tight,} 2 { m loose}$	$0.68 \pm 0.07(\text{stat}) \pm 0.09(\text{syst})$	$0.14 \pm 0.02(\text{stat}) \pm 0.02(\text{syst})$	0
Total Trilepton	$4.5 \pm 0.2 (\mathrm{stat}) \pm 0.6 (\mathrm{syst})$	$0.88 \pm 0.05 ({\rm stat}) \pm 0.13 ({\rm syst})$	1
2tight,1Track	$4.44 \pm 0.19({\rm stat}) \pm 0.58({\rm syst})$	$3.22 \pm 0.48 ({ m stat}) \pm 0.53 ({ m syst})$	4
1tight,1loose,1Track	$2.42 \pm 0.14({\rm stat}) \pm 0.32({\rm syst})$	$2.28 \pm 0.47 ({\rm stat}) \pm 0.42 ({\rm syst})$	2
Total Dilepton+Track	$6.9 \pm 0.2 ({ m stat}) \pm 0.9 ({ m syst})$	$5.5 \pm 0.7 ({ m stat}) \pm 0.9 ({ m syst})$	6

"Signal" numbers are for a particular choice of benchmark model

CDF Trilepton Search (II)

- Data consistent with background, set limits on
 - Mass of lightest chargino (for two specific model assumptions)
 - In the m₀ − m_{1/2} plane for mSUGRA

Exclude lightest chargino mass below 145.4 GeV for $m_0 = 60$ GeV and mass below 127.0 GeV for $m_0 = 100$ GeV.

Aspen 2009 Winter Conference 10 February 2009

Michael Eads University of Nebraska - Lincoln

DØ Trilepton Search (I)

Michael Eads

University of Nebraska - Li

- Combines a μμl, μτl, eμl, µтт, and eel selection
 - ◆ I = isolated track in central tracker
 - ◆ Optimize a "high-p₊" and "low-p_{_}" selection for each channel
- Require lepton (or track) pT above 8-15 GeV
- Use event kinematics (MET, minv, mT, etc...) to separate from background
- Results in 0-4 background events

arXix: 0901.0646 Submitted to PLB

arXix: 0901.0646 Submitted to PLB

DØ Trilepton Search (II)

- Signal efficiency in each channel varies between 1% and 5%
- Observed events are consistent with the predicted background, so limits are set
 - On mass of lightest chargino for several choices of parameters
 - In the m₀ m_{1/2} plane for mSUGRA
 - mSUGRA limits depend on value of tan β, stable (within factor of 2) up to 10

Exclude lightest charginos up to 130GeV for tan β up to 9.6

Squarks/Gluinos

- Squarks/gluinos strongly produced
- Decay to quarks and LSP
 - → signature is multiple jets and missing energy
- The exact number of jets produced (and the p_T of these jets) is determined by the mass relationships between squarks and gluinos
 - → M_{squark} < M_{gluino} ⇒ produce squark pairs, each decay to quark + LSP
 - M_{gluino} > M_{squark} ⇒ produce gluino pairs, each decay to 2 quarks + LSP
 - $ightharpoonup M_{squark} pprox M_{gluino} \Rightarrow can produce squark+gluino$
- → ⇒ Can produce 2, 3, or 4 (or more) jets (with missing energy from the LSP)

DØ Squark/Gluino Search

- Divided into 2/3/4 jet (+ MET) channels, require jets above 35 GeV, H_T above 300-400 GeV, and MET above 100-200 GeV
- Selects 11/9/20 events, consistent with background estimates
 - Expect ~10 signal events
 - Main backgrounds from Z+jets, W+jets, and ttbar
- Limits set on squark and gluino masses, and mSUGRA parameters
 - Exclude squarks masses below 379
 GeV and Gluino masses below 308
 GeV in most conservative
 hypothesis
 - **▶** Exclude masses up to 390 GeV for $M_{\text{squark}} \approx M_{\text{gluino}}$

CDF Squark/Gluino Search

- Divided into 2/3/4 jet (+ MET) final states
- Nequire jets above 55-165 GeV, MET above 90-180 GeV, H_→ above ~300 GeV
- Select 18/38/45 data events, with 16±5/37±12/48±17 expected background events
 - Background dominated by multijets and W/Z+jets
- Set limits on squark and gluino masses, as well as on mSUGRA parameters
 - \bullet Exclude masses up to 392 GeV for $M_{\text{squark}} \approx M_{\text{gluino}}$
 - Exclude gluino masses up to 280 GeV for all squark masses examined
 - Exclude gluino masses up to 423 GeV for squark masses below 378 GeV

DØ Squarks in jets+T

- Search for a pair of squarks, which (eventually) decay to two (or more) jets and at least one tau (that decays hadronically)
 - Taus important at low slepton mass or high tan β
- Require jet > 35 GeV, tau > 15 GeV, MET > 175 GeV, H_⊤ > 325 GeV
- Observe 2 data events
 (consistent with background)
 while expecting ~5 signal
 events
- Set limit in m₀ m_{1/2} mSUGRA plane

au+neutralino+neutrino)

Stop/Sbottom Searches

- Due to mixing, the 3rd generation squarks and sleptons should be the lightest
 - Since stops/sbottoms are lighter than the other squarks, they should have the largest production cross section among the squarks
 - The decays of the stop and sbottom depend on various mass relationships
 - Possibilities for stop (assuming it is lighter than the top) include
 - ♦ Stop $\rightarrow c$ + neutralino
 - Stop → b + lepton + sneutrino
 - Stop → b + W + neutralino
 - Each decay results in a different signature

CDF stop in dileptons

Observed 95% CL

- Assume 2 stops produced, each decay to b+l+v+neutralino
 - Assume stop lighter than top, all other squarks/sleptons heavy, and stop decays exclusively to b + chargino
 - Mimics top dilepton channel
- Require e/µ > 20 GeV, MET > 20 GeV, jets > 12-20 GeV, btagging
- Reconstruct the stop mass to separate from t-tbar
- Limits are set in the plane of neutralino mass versus stop

CDF Gluino-Mediated Sbottom Production

- Produce 2 gluinos, each decay to 2b + neutralino, resulting in 4b + MET final state
- Require jets > 25 GeV, MET > 70 GeV, divide into 1-tag/2-tag samples
- 2 NN's one for QCD backgrounds, one for SM backgrounds
- Limits set on gluino cross section versus mass and gluino mass – sbottom mass plane
 - Cross section constrained to be less than 40 fb for sbottom mass of 250 GeV

University of Nebraska - Lincoln

DØ stop in dileptons

submitted

Ö

- Assume 2 stops produced, each decay to b+l+sneutrino (assume BR=1)
 - ◆ Search in eµ and ee final states
- Require e(µ) > 15(8) GeV, >= 1 jet > 15 GeV, MET > 15-30 GeV
- Use kinematics and b-tagging (in 10° ee) to separate from SM background, divide into bins of S₊, H
- Set limits in stop mass sneutrino mass plane
- Exclude stop < 175 GeV for</p> large ∆m

140 160 180

Stop mass (GeV)

DØ stop in lepton+jets

- Assume two stops produced, each decay to b and lightest chargino (which then decays to W and lightest neutralino)
 - Mimics ttbar lepton+jets channel
- Nequire e/µ > 20 GeV, MET > 20-25 GeV, 3 jets > 15 GeV
- Use multivariate likelihood discriminate to separate from ttbar background
- Set cross section limits for different chargino and neutralino masses (factor 2-13 above theory prediction)

submitted to

GMSB

- In gauge-mediate supersymmetry breaking, SUSY is broken in a hidden sector. This breaking is then communicated to the SM via messenger fields and standard gauge interactions.
- The LSP is the gravitino
- SUSY particles will eventually decay to the LSP through the next-to-lightest SUSY particle (NLSP)
 - NLSP can be the lightest neutralino or a slepton (usually the lightest stau)
 - NLSP decays to LSP can be suppressed, resulting in long NLSP lifetimes!
- If the NLSP is the neutralino, the typical signature is photons + MET (+ X)

10 February 2009

CDF diphoton search

- Produce a chargino and a neutralino, which decay to produce two photons and gravitinos (MET)
- Require 2 photons > 13 GeV, MET signif > 3, H_{τ} > 200 GeV, photons not back-to-back
- Limits set on lightest neutralino mass versus lifetime
- Exclude neutralinos < 138 GeV for prompt decays

	<u></u>
Background Source	Expected Rate±Stat±Sys
Electroweak	$0.39 {\pm} 0.14 {\pm} 0.11$
QCD	$0.10 \pm 0.10 \pm 0.00$
Non-Collision	$0.049 \pm 0.042 \pm 0.028$
Tri-Photon	$0.00 \pm 0.180 \pm 0.035$
Wrong Vertex	$0.081 \pm 0.081 \pm 0.008$
Total	$0.62 {\pm} 0.26 {\pm} 0.12$

Observe 1 data event

Delayed photons PRL 99, 121801 (2007)

Long Lived Particles

- Particles can be long-lived when their only allowed decay is suppressed. SUSY examples are
 - Stop if decays suppressed by kinematics
 - GMSB with stau NLSP (if stau→gravitino decays suppressed)
 - Lightest charginos if they are nearly mass degenerate with lightest neutralino
- Signature depends on the lifetime
 - Decays inside the detector produce displaced vertices or "kinked" tracks
 - Decays outside the detector can result in "slow muons" if particles are highly penetrating

CDF Charged Massive Stable Particles

- Look for slow, ionizing particles that pass through the entire detector
- Use CDF TOF detector to measure speed, get mass from speed and track momentum
- For |η|<0.7, p_T>40,
 0.4<β<0.9, and
 m_{meas}>100GeV, exclude
 - σ < 10 fb (weak)
 - σ < 48 fb (strong)
- Exclude stable stops below 249 GeV

DØ Charged Massive Stable Particles

- Look for pairs of "slow muons" using timing in muon system to measure the speed
- Background is instrumental only and is estimated from data
- No excess observed, so limits set on stau cross section and lightest chargino mass
- Exclude gaugino-like charginos below 206 GeV and higgsinolike charginos below 171 GeV

Summary

- I've only been able to highlight some of the most recent SUSY results from the Tevatron
 - Didn't include RPV SUSY results, MSSM Higgs results
- For a complete list, each experiment has a website with all public results:
 - http://www-cdf.fnal.gov/physics/exotic/exotic.html
 - http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm
- CDF/DØ combined limits for squarks/gluinos and trileptons are in progress
- Both experiments have 5 fb⁻¹ of recorded data and continue to take high-quality data, so stayed tuned for updated results!

Backup Slides

CDF Detector

Electron acceptance:

 $|\eta| < 2.0$

Muon acceptance:

 $|\eta| < 1.5$

Silicon tracking:

 $|\eta| < 2.0$

Calorimetry:

 $|\eta| < 3.6$

Excellent tracking!

DØ Detector

Electron acceptance:

$$|\eta| < 3.0$$

Muon acceptance:

$$|\eta| < 2.0$$

Silicon tracking:

$$|\eta| < 3.0$$

Calorimetry:

$$|\eta| < 4.2$$

Excellent muon system and calorimeter!

Trilepton Decays

Decays to / sneutrinos open up, reducing BR to charged leptons

Maximum BR to charged leptons. Charginos/neutralinos decay through sleptons. tau decays of chargino important. Third lepton very soft near right-hand line

Three-body decays of charginos/neutralinos (through W/Z) dominate

Aspen 2009 Winter Conference 10 February 2009 Michael Eads University of Nebraska - Lincoln

DØ Trilepton Selection

TABLE I: Selection criteria for the $\mu\mu\ell$, $ee\ell$ and $e\mu\ell$ analyses (all energies, masses and momenta in GeV, angles in radians) for the low- p_T selection and high- p_T selection, see text for further details.

	Selection	$\mu\mu\ell$		eel		$e\mu\ell$	
		low p_T	high p_T	low p_T	high p_T	low p_T	high p_T
I	$p_T^{\ell 1}, p_T^{\ell 2}$	>12, >8	>18, >16	>12, >8	>20, >10	>12, >8°	>15, >15
	$m_{\ell_1 \ell_2}^b$	€ [20, 60]	$\in [0, 75]$	€ [18, 60]	$\in [0, 75]$	-	-
П	$\Delta \phi_{\ell_1 \ell_2}$	< 2.9	< 2.9	< 2.9	< 2.9	_	_
	p_T	>20	>20	>22	>20	>20	>20
	$Sig(\cancel{E}_T)$	>8	>8	>8	>8	>8	>8
	m_T^{\min}	>20	>20	>20	>14	>20	>15
Ш	jet-veto H_T	_	< 80	_	_	_	_
IV	p_T^{tr}	>5	>4	>4	>12	>6	>6
	m_T^{tr}	>10	>10	>10	>10	>10	>8
V	$m_{\ell_{1,2},tr}$	∉ [80, 110]	_	_	_	< 70	< 70
VI	anti W			tight likelihood ^c	_	tight likelihood ^d	
						hit in 2 i	inner layers ^d
						very tight r	nuon isolation ^e
						$\sum_{0.05 < \Delta R}$	$_{<0.4} p_T^{\text{track}} < 1$
	$E_T \times p_T^{tr}$	>200	>300	>220	_	-	_
VII	p_T^{bal}	<4	<4	<4	<4	<2	<2

 $^{{}^{}a}p_{T}^{\ell 1}$ and $p_{T}^{\ell 2}$ are electron and muon p_{T} , respectively.

"High-p_T" and "low-p_T" selection (based on two SUSY benchmark models) optimized for each channel Selection for eel, eµl, and µµl.

Selection for μτl and μττ

TABLE II: Criteria for the $\mu\tau\ell$ and $\mu\tau\tau$ selections (all energies, masses and momenta in GeV, angles in radians), see text for further details.

	Selection	MIL		$\mu\tau\tau$
I	$p_T^{\ell 1}, p_T^{\ell 2}$	2/12	>15, >8a	74
II	$\Delta \phi_{\ell_1 \ell_2}$		< 2.9	
	E_T		>20	
	$\operatorname{Sig}(E_T)$		>8	
	m_T^{μ}		>20	
Ш	jet-veto H_T		<80	
IV	p_T^{tr}	>3	$p_T^{\tau_2}$	>4
	$\Delta \phi_{tr,B_T}$	>0.5	$\Delta \phi_{72,B_T}$	>0.5
V	$m_{\ell_{1,2},tr}$	<60		< 60
	anti W	likelihood	V-0.0079 +1550000	likelihood
VI			$NN_{\tau_1} \times NN_{\tau_2}$	>0.7
VII	$E_T \times p_T^{tr}$	>300	p_T^{bal}	< 3.5

 $^{^{}a}p_{T}^{\ell 1}$ and $p_{T}^{\ell 2}$ are muon and τ lepton $p_{T},$ respectively.

^bℓ refers to the two identified leptons

[°]for p_{π}^{tr} <15 GeV

 $^{^{}d}$ for $m_{T}^{\mu} \in [40, 90] \text{ GeV}$

for $m_T^k \in [40, 90]$ GeV

Stop Decays

		Decay		К	inematic		
	1	$\tilde{t}_1 \rightarrow t \tilde{\chi}_i^0$	$m_{\tilde{\epsilon}_1} > m_t + m_{\tilde{\chi}_1^0}$				
2-body	2	$\bar{t}_1 \rightarrow b \; \tilde{\chi}_j^+$	$\tilde{\chi}_{j}^{+}$ $m_{\tilde{t}_{1}} > m_{b} + m_{\tilde{\chi}_{j}^{+}}$				
	3	$\tilde{t}_1 \rightarrow c \tilde{\chi}_i^0$		m	$i_1 > m_{\tilde{\chi}_i^0}$		
	4	$\tilde{t}_1 \rightarrow bW \tilde{\chi}_i^0$	$m_{\tilde{t}_1} >$	$m_W + m_{\tilde{\chi}_i^0}$	$m_t + m_{\tilde{\chi}_i^0} > m_{\tilde{t}_1}$ $m_{\tilde{b}} + m_W > m_{\tilde{t}_1}$		
					$m_b+m_{\tilde{\chi}_{i}^{+}} > m_{\tilde{t}_1}$ $m_t+m_{\tilde{\chi}_{i}^{0}} > m_{\tilde{t}_1}$		
3-body	5	$\tilde{t}_1 \rightarrow bH^+\tilde{\chi}_i^0$	$m_{\tilde{t}_1} >$	$\mathbf{m}_{H}^{+} + m_{\tilde{\chi}_{i}^{0}}$	$m_{\tilde{b}}+m_W>m_{\tilde{t}_1}$		
	L				$m_b + m_{\tilde{\chi}_j^+} > m_{\tilde{t}_1}$		
	6	T			> m _b +m ₀		
	7	$\bar{t}_1 \rightarrow b\ell \bar{\nu}_\ell$		773 _{£1}	> m _b +m _l		
			$m_{\tilde{t}_1} >$	$m_b{+}m_{\tilde{\chi}^0_i}$	$m_t + m_{\tilde{\chi}_i^0} > m_{\tilde{t}_1}$ $m_W + m_b + m_{\tilde{\chi}_i^0} > m_{\tilde{t}_1}$		
		$\tilde{t}_1 \rightarrow b \tilde{\chi}_i^0 f \tilde{f}'$			$m_{\tilde{b}} + m_W + m_{\tilde{\chi}_i^0} > m_{\tilde{t}_1}$		
					$m_b + m_{\tilde{\chi}_j^+} > m_{\tilde{t}_1}$		
					$m_W + m_b + m_{\tilde{\chi}_i^0} > m_{\tilde{t}_1}$		
4-body	8				$m_t + m_{\tilde{\chi}_i^0} > m_{\tilde{t}_1}$		
					$m_{H^+} + m_b + m_{\tilde{\chi}_1^0} > m_{\tilde{t}_1}$ $m_{\tilde{b}} + m_{H^+} + m_{\tilde{\chi}_1^0} > m_{\tilde{t}_1}$		
				$m_b + m_{\tilde{\chi}_j^+} > m_{\tilde{t}_1}$ $m_b + m_{\tilde{\chi}_j^+} > m_{\tilde{t}_1}$			
				$m_{H^+} + m_b + m_{\chi_j^0} > m_{\tilde{t}_1}$			
				$m_b + m_{\tilde{\chi}_i^+} > m_{\tilde{t}_1}$			
					$m_{\tilde{f}} + m_{\tilde{\chi}_{j}^{+}} + m_{\tilde{\chi}_{i}^{0}} > m_{\tilde{t}_{1}}$		

Decay	Final State $\tilde{t}_1\tilde{t}_1$
$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	2 (c)-jets+ <i>E</i> _T
$\tilde{t}_1 \rightarrow b \ \tilde{\chi}_1^{\pm}$	
	2 b-jets+2 leptons+R _T
$\tilde{\chi}_1^+ \rightarrow W^* \tilde{\chi}_1^0$	2 b-jets+1 light-jet+1 lepton+B _T
	2 b-jets+2 light-jets+B _T
$\tilde{\chi}_1^+ \rightarrow \ell \tilde{\nu}_l$	2 b-jets+2 leptons+R _T
	2 b-jets+2 leptons+R _T
$\tilde{t}_1 \rightarrow bW \tilde{\chi}_i^0$	2 b-jets+1 light-jet+1 lepton+B _T
	2 b-jets+2 light-jets+₽ _T
$\bar{t}_1 \rightarrow b\ell \bar{\nu}_\ell$	2 b-jets+2 leptons+R _T
	2 b-jets+2 leptons+R _T
$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 f \tilde{f}$	2 b-jets+1 light-jet+1 lepton+B _T
	2 b-jets+2 light-jets+B _T

Table I: Stop decays in the MSSM with R-parity conservation.

DØ Diphoton Search

- Assume the NLSP is the neutralino, which decays to a photon and a gravitino. This produces a 2 photon + MET signature
 - Assume prompt decays
- Require 2 photons > 25 GeV
- Most troublesome backgrounds are jets and electrons faking photons (estimated from data)
- Set limits on chargino and neutralino masses
- Exclude neutralino < 125 GeV and chargino < 229 GeV

PLB **659**, 856 (2008)

1.1 fb⁻¹

SUSY Higgs Searches

- → H⁺ in ttbar (1.0 fb⁻¹)
- $h \rightarrow \tau_{\mu} \tau_{had} (1.2 \text{ fb}^{-1})$
- Neutral higgs in multi-b
 (2.6 fb⁻¹)
- ◆ MSSM higgs in TT (2.2 fb⁻¹)
- Neutral higgs in $\tau_{\mu}\tau_{had}$ +b (1.2 fb⁻¹)
- → H⁺ in tb (0.9 fb⁻¹)
 - arXiv: 0807.0859 (submitted to PRL)

- → H+ in top decays (2.2 fb⁻¹)
- ◆ MSSM higgs in bb (2.0 fb⁻¹)
- MSSM higgs in ττ (1.8 fb⁻¹)

RPV SUSY

- It is usually assumed that SUSY models conserve R-parity
 - Results in stable LSP and sparticles produced in pairs
- But, there is no reason that R-parity needs to be absolutely conserved
 - Can be violated with either lepton- or baryon-number violating terms
 - There are limits from (for example) flavor-changing neutral currents, so the amount of R-parity violation should be small
- With RPV interactions, LSP isn't stable and single SUSY particles can be produced

CDF High-Mass Resonances Decaying to Lepton Pairs

		e	τ channel				1.0 fb ⁻¹
signal mass	mass cut	SM background	observed	exp. signal	exp. limit	obs. li	
(GeV/c^2)	(GeV/c^2)	events	events	events	(pb)	(pb)	. •
100	> 80	332.4 ± 13.1	343	827.1 ± 60.0	21.09	21.16	
200	> 160	22.7 ± 1.4	21	116.4 ± 6.8	1.02	0.96	1 L
300	> 230	5.0 ± 0.5	5	31.8 ± 1.6	0.19	0.19	1
400	> 280	2.1 ± 0.4	2	10.9 ± 0.5	0.096	0.092	1 i
500	> 310	1.4 ± 0.3	2	3.9 ± 0.1	0.069	0.077] "
600	> 340	1.0 ± 0.3	0	1.3 ± 0.05	0.055	0.039	l L
700	> 360	0.9 ± 0.2	0	0.4 ± 0.02	0.055	0.040] [
800	> 360	0.9 ± 0.2	0	0.1 ± 0.004	0.050	0.037	I
		μ	τ channel				j • (
signal mass	mass cut	SM background	observed	exp. signal	exp. limit	obs. limit) 🗻 F
(GeV/c^2)	(GeV/c^2)	events	events	events	(pb)	(pb)	
100	> 80	153.1 ± 10.8	135	548.2±48.8	14.76	13.01	ŀ
200	> 160	9.3 ± 1.3	2	87.2±5.9	0.66	0.26] ~
300	> 220	2.6 ± 0.5	1	24.1 ± 1.4	0.19	0.16	
400	> 240	1.8 ± 0.4	0	8.6 ± 0.4	0.12	0.093	
500	> 280	1.0 ± 0.3	0	2.8 ± 0.1	0.081	0.080	
600	> 320	0.6 ± 0.2	0	0.91 ± 0.04	0.072	0.056	
700	> 350	0.4 ± 0.2	0	0.28 ± 0.01	0.065	0.053	1
800	> 370	0.4 ± 0.2	0	0.08 ± 0.003	0.062	0.052] •
		e,	u channel				j
signal mass	mass cut	SM background	observed	exp. signal	exp. limit	obs.limit]
(GeV/c^2)	(GeV/c^2)	events	events	events	(pb)	(pb)	
100	> 90	22.8 ± 2.4	22	3029.2 ± 114.8	0.45	0.43	1
200	> 190	3.2 ± 0.5	3	405.9 ± 12.8	0.062	0.058	1
300	> 280	0.6 ± 0.2	0	98.0 ± 2.8	0.032	0.024	1
400	> 360	0.2 ± 0.2	0	27.9 ± 0.7	0.024	0.022]
500	> 450	0.1 ± 0.1	0	8.3 ± 0.2	0.021	0.020]
600	> 500	0.06 ± 0.1	0	2.6 ± 0.07	0.021	0.020]
700	> 550	0.05 ± 0.09	0	0.9 ± 0.02	0.020	0.020	
800	> 600	0.04 ± 0.08	0	0.2 ± 0.01	0.019	0.018	:hael Ead

- Single sneutrino produced in lepton-flavor violating RPV interaction, decays to pairs of
- Use eμ, eτ, μτ final states
- Exclude sneutrino masses below
 - ◆ 586 GeV in eµ

leptons

- ◆ 487 GeV in eT
- ◆ 484 GeV in μτ

DØ Scalar Sneutrino in eµ

PRL 100, 241803 (2008)

1.0 fb⁻¹

- Produce a single sneutrino via a lepton-number violating RPV interaction, then decays to an electron and a muon.
- Main background is SM diboson production
- Observe 68 events, expect 59.2±5.3 from backgrounds.
- Single would show up as peak in the eµ mass spectrum
- Set limits on two RPV couplings (versus sneutrino mass)

